
IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 1, Issue 1, March, 2013 
ISSN: 2320 - 8791 
www.ijreat.org 

 

www.ijreat.org 
Published by: PIONEER RESEARCH & DEVELOPMENT GROUP(www.prdg.org) 

1 

 

Survey on Mitigation of DOS and DDOS Attacks in the 

Presence of Clock drift  

C.Kavitha1, S.Mohana2, Mrs.A.Karmel3 

1,2Department of Computer Science and Engineering/ Agni College of Technology/ Final Year, 

Chennai, Tamil Nadu/India 

 
3Department of Computer Science and Engineering/ Agni College of Technology/Assistant Professor, 

Chennai, Tamil Nadu/India 

Abstract 
Distributed Denial of Service (DDoS) Attacks which can be 

so powerful that they can easily deplete the computing 

resources or bandwidth of the potential targets. DDoS 

attacks can be accosted in two levels: application-level and 

network-level. The weak point in network-based 

application is that the communication port is commonly 

open .This allows attackers to possibly launch Denial of 

Service (Dos) Attacks. Solutions to this problem are, we 

use port hopping technique to support many clients without 

the need of group synchronization in the presence of clock 

drift. Furthermore we use HOPERAA algorithm and 

BIGWHEEL algorithm to overcome distributed denial of 

service attacks. 

Keywords: Network Attacks, Port number, Contact 

initiation, Distributed Denial of Service Attack. 

 

1. Introduction 

 
A Network attack is a threat, intrusion, and denial of 

service or other attack on a network infrastructure 

that will analyze your network and gain information 

to eventually cause your network to crash or to 

become corrupted. 

  
There are at least seven types of network attacks. 

They are mapping, Spoofing attack, Sniffing attack, 

Hijacking, Trojans, Social engineering, DoS and 

DDoS. But this paper describes about Denial of 

Service (DoS) attacks and Distributed Denial of 

Service (DDoS) attacks. 

 

Denial of Service (DoS) attack is an attempt to make 

machine or network resource unavailable to its 

intended users by disrupting it, crashing it, jamming 
it or flooding. The motivation for DoS attacks is not 

to break into a system. One can say that this will 

typically happen through following means: 

1. Crashing the system. Deny communication 

between systems. 

2. Bring the network or the system down or have it 

operate at a reduced speed which affects 

productivity. 

3. Hang the system, which is more dangerous than 

crashing since there is no automatic reboot.  

DoS attacks can also be major components of other 

type of attacks. There are many types of DoS attacks. 

Among them important attacks that exist are 

Teardrop attack, Bandwidth attack, Blind attack, 

SYN flood attack and Smurf attack. 

 

1) Teardrop attack sends incorrect IP fragments to the 

target server.So the server gets crashed if it does not 

implement TCP/IP fragmentation reassembly code 

properly. 

 

2) A bandwidth attack is where an attacker tries to 

consume the available bandwidth of a network by 

sending a flood of packets. They attacks server fast in 

a kbps speed.  

 

3) With a blind attack the attacker uses one or more 

forged IP addresses, which is extremely difficult for 

the server to filter those packets.  

 

4) A SYN flood is a form of denial of service attack 

in which an attacker sends a succession of 

SYN requests to a target's system in an attempt to 

consume enough server resources to make the system 

unresponsive to legitimate traffic.  

 

5) In smurf attack, the attacker sends an IP ping 

request to any website. The ping packet is broadcast 

to a number of hosts within that site's local network. 



IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 1, Issue 1, March, 2013 
ISSN: 2320 - 8791 
www.ijreat.org 

 

www.ijreat.org 
Published by: PIONEER RESEARCH & DEVELOPMENT GROUP(www.prdg.org) 

2 

 

The request is from another site and it is the target 

site that receives the denial of service attack. 

  

A Distributed Denial of Service (DDoS) attack is the 

combined effort of several machines to bring down 

victim. It occurs when multiple compromised 

systems or multiple attackers flood the bandwidth or 

resources of a targeted system with useless traffic. 

 

 
 

Fig 1: Denial of Service attack   and Distributed   Denial of 

Service attack 
 

Most of the time, attackers collect many (millions) of 

zombie machines or bots .In many cases there is a 

master machine that launches the attack to zombie 

machines that are part of a bot network. Some bot 

networks contain many thousands of machines used 

to launch an attack 

To avoid all those attacks we use port –hopping 

technique in the presence of clock drifts, which 

implies clock values, can vary arbitrarily much with 

time and in multiparty applications. The application 

parties communicate via ports that change 

periodically over time using the pseudorandom 

function. This method was inspired from the well 

known frequency hopping paradigm used in signal 

communication protocols [2]. The focus in that area 

is to find hopping sequences with the optimal 

Hamming Correlation Properties [6],[7],[8] But in the 

earlier solutions, port-hopping support between pairs 

of processes which are synchronous or exchange 

acknowledgements. Acknowledgment, if lost, can 

cause a port to be open for longer time .This become 

targets to DoS attack themselves. 

We propose two algorithms in proposed to avoid 

attacks. One is HOPERAA (Hopping-Period-Align-

and-Adjust) algorithm, executed by each client to 

adjust its period length and align its hopping time 

with the server. Second is BIGWHEEL algorithm 

enable multiparty communication with port hopping, 

this algorithm for a server to support hopping with 

many clients. 

 

The basic idea in both algorithms is that each client 

interacts independently with the server and considers 

the server’s clock as the point of reference clock. In 

this algorithm, there is no need for group 

synchronization which would raise scalability issues. 

The HOPERAA and BIGWHEEL algorithm’s 

detailed explanations are in the Section 3.2.3 and 3.3 

respectively. 

 

 

1.1  Problem analysis 
 

Problem that an adversary wants to subvert the 

communication of client-server application is by 

attacking the communication channels. At each time 

point, some ports must be open at the server side to 

receive the messages sent from legitimate clients The 

N which denotes the size of port number space, 

meaning that there are N ports that the server can use 

for communication at the server side.  

The server and the legitimate clients share a 

pseudorandom function .It generate the port numbers 

which will be used in the communication. We assume 

there exists a preceding authentication procedure. It 

enables the server to distinguish the messages from 

the genuine clients. We assume that every client is 

honest which means any execution of the client is 

based on the protocol and clients will not reveal the 

random function to the adversary. The attacker is 

modeled as an adaptive adversary who can eavesdrop 

and attack a bounded number of ports 

simultaneously.  

 



IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 1, Issue 1, March, 2013 
ISSN: 2320 - 8791 
www.ijreat.org 

 

www.ijreat.org 
Published by: PIONEER RESEARCH & DEVELOPMENT GROUP(www.prdg.org) 

3 

 

1.2 System architecture 
 

Clock drift is used to maintain clock rates between 

client and server. Clock rates between the client and 

server has been adjusted and aligned to same. Based 

on the application the client use, Pseudo random 

function generates pseudo random seed in the server 

and it assigns ports to each client.    

Contact messages: (1) Client to send message to a 

port that is already closed or is not opened yet and 

then client align the hopping time period at adversary 

chosen time intervals to control the align. (2) 

HOPERRA Executed by each client to adjust its 

hopping period length and align its hopping period 

with the server.  

  

 

 
Fig 3: System Architecture 

2. Related work 
 

Author Badishi et al. [3] consider the problem of 

overcoming (Distributed) Denial of Service (DoS) 

attacks by realistic adversaries that have knowledge 

of their attack’s successfulness; His solution for this 

problem in a high-speed network environment 

necessitates lightweight mechanisms for 

differentiating between valid traffic and the attacker’s 

packets. He says that the   main challenge in 

presenting such a solution is to exploit existing 

packet filtering mechanisms. It is in a way which 

allows fast processing of packets, that is complex 

enough so that the attacker cannot efficiently craft 

packets that pass the filters. He show a protocol that 

mitigates DoS attacks by adversaries that can 

eavesdrop and (with some delay) adapt their attacks 

accordingly and he show that his protocol provides 

effective DoS prevention for realistic attack and 

deployment scenarios. 

Author Lee Thing [4] propose a another technique, 

called port hopping where the UDP/TCP port number 

used by the server varies as a function of time and a 

shared secret between the server and the client. The 

main strength of the mechanism lie in the 

simplification of both the detection and filtering of 

malicious attacks packets. This port hopping 

technique is compatible with the UDP and TCP 

protocols which can be implemented using the socket 

communications for the UDP protocol, and for 

setting up TCP communications. His experiments 

show that the port hopping technique is effective in 

detecting and filter out the malicious traffic. 

Author Srivatsa et al. [5] propose a light weight 

client-transparent technique to defend against DoS 

attacks with two unique features: (i) his technique 

can be implemented entirely using JavaScript support 

provided by a standard client-side browser like 

Mozilla Firefox. Client transparency which follows 

from the fact that: (i) no changes to client-side 

software are required (ii) no client-side super user 

privileges are required, and (iii) clients (human 

beings or automated clients) can browse a DoS 

protected website in the same manner that they 

browse other websites (ii) Although he operate using 

the client-side browser (HTTP layer), His technique 

enables fast IP level packet filtering at the server's 

firewall and requires no changes to the application(s) 

hosted by the web server. In his paper he presents a 

detailed design of his technique along with a detailed 

security analysis. He also describes a concrete 

implementation of our proposal on the Linux Kernel 

and presents an evaluation using two applications: 

bandwidth intensive Apache HTTPD and database 

incurs a low performance overhead and is resilient to 

DoS attacks. 

3. Solutions to the Problem 
3.1 Pseudorandom function 
 

Clients get the seed from Server for the 

pseudorandom function to compute the port 



IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 1, Issue 1, March, 2013 
ISSN: 2320 - 8791 
www.ijreat.org 

 

www.ijreat.org 
Published by: PIONEER RESEARCH & DEVELOPMENT GROUP(www.prdg.org) 

4 

 

sequence. The application data is sent from Client to 

Server which is sent out to the open ports of Server 

that changes every time units of Server clock, 

corresponding to client time units in Client’s clock. 

This happens after the contact-initiation part. 

Periodically, the sender and receiver can use new 

seeds of the pseudorandom function to generate 

different port number sequences. This allows the port 

number sequence which is used for communication is 

changed periodically. The clients and the server share 

a pseudorandom function to compute which port 

should be used in a certain time slot. Every client 

uses the same pseudorandom function to generate the 

destination port number.  

 

3.2 Port Hopping 
 

 Port hopping mechanism consists of three parts: the 

contact initiation part, the data transmission part, 

and the resynchronization/adjustment part which is 

controlled by the Hopping Period Alignment and 

Adjustment (HOPERAA) algorithm. There are 

basically two ports called worker ports and guard 

ports.  

 

The ports which are open in the server side for 

receiving the data messages from the client are called 

worker ports. The ports which are open in the server 

side for receiving the contact initiation messages 

from the client called guard ports. 

 

3.2.1 Contact-Initiation Part 
 

 To enable Client C to initiate contact with S without 

having Server listen at a “well-known” port and 

without relying on a third party, the timestamp of the 

corresponding contact-initiation message received by 

the server, and t2 is the arriving time of the same 

message. They will be stored later by the client for 

estimating its clock drift. The server divides the range 

of port numbers into k intervals evenly and opens k 

different guard ports at the same time, keeping one 

guard port per one interval. It changes them for every 

Length of the server’s hopping period time units but 

in each interval, it still keeps one open guard port.  

Client sends contact-initiation messages to all the 

ports in an interval which is randomly chosen. When 

Server receives a contact-initiation message, it replies 

with the seed for the pseudorandom function and it 

will send the index for computing the next worker 

port to the clients. When the next worker port is 

open, the server will send that reply message which 

will happen in Length of the server’s hopping period 

time units, because the network may lose messages 

and open ports can be disabled by the adversary, 

Client may not get the reply from Server. To save 

bandwidth, instead of keeping on sending contact-

initiation messages, Client will set a timeout for 

waiting the reply message.  

The timeout is set to time units, taking into account 

the message round trip time and the waiting time by 

the server to send the reply .Until it reaches the 

timeout., if Client does not receive a reply, then  it 

will choose another interval of port numbers and send 

contact-initiation messages again until it gets the 

reply. 

Algorithm 1.Algorithm for Client C in the 

initiation stage 

 

Tc←undef 

Reply←false 

-Send contact initiation messages phase: 

while reply=false do 

I← select (Ii|i {1, 2, .k}) 

for all p  I do 

     send (init, time, p) 

end for 

               wait (2µ+L) 

end while  

 

-receive reply 

phase: 

receive(reply, σ,h1,t1) 

if reply=false then 

reply= true 

Tc=0 

Start sending date 

end if 

Algorithm 2.Algorithm for Server S in the initiation  

stage 

– receive contact-initiation message phase:  

receive (init,time,p) 

t1 ← Timenow 

if sessionC = undef  then  

open (session,C) 



IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 1, Issue 1, March, 2013 
ISSN: 2320 - 8791 
www.ijreat.org 

 

www.ijreat.org 
Published by: PIONEER RESEARCH & DEVELOPMENT GROUP(www.prdg.org) 

5 

 

h←time  

end if 

wait until next worker port pi opens send(reply, 

σ,timestamp,h1,t1) 

3.2.2 Data transmission part 
In the data transmission stage, the hopping time of 

Client will drift apart from the server’s. This might 

cause Client to send messages to a port that is already 

closed or is not opened yet, depending on whether 

Client’s clock is slower or faster than Server clock. 

Deviation of hopping times would imply more 

message loss, so Client has to align the hopping time 

at adaptively chosen time intervals to control the 

align called the HOPERAA execution-intervals to 

keep the offset of the open times counted by the 

server and the client of a worker port within time 

units, then the HOPERAA execution interval. The 

client has no idea about its clock drift. Every contact-

initiation message and reply message will be attached 

with the timestamp of its sending time. The reply 

message also has the timestamp and the arrival time 

of the first contact-initiation message received by the 

server.  

Algorithm 3. Algorithm for C in data transmission 

stage 

Seq ← 0 

Pold ← f (σ) 

Pnew← f ((σ+ 1)) 

-SA (*sending the messages*) 

while true do 

send (Data,Pold) 

if (i − 1) L ≤ Tc ≤ iL − µ then 

Send (Data,Pnew)  

end if  
end while 

– UA (*changing the destination port*) 

{Tc=iL} 

Pold ← Pnew 

Pnew ← f ((σ+ i + 1)) 

Client sends the data messages to the worker ports of 

server. After server sends the reply in the contact –

initiation part .Client gets the seed of the 

pseudorandom function f which generates the 

sequence of the worker ports. L+µ time units are 

taken as the open interval in the worker ports. µ Time 

units are taken as the new worker port which will be 

opened earlier than the waiting time of the old one. 

 

Client sends the contact initiation message received 

by server which sends the reply message at the time 

when next worker port is opened. And σ denotes the 

integer for pseudorandom function to generate port 

number. When server replies with a integer, client 

will send data messages to the port computed from 

f.When Tc=iL, the destination port number of the data 

messages will be computed. 

 
pi+1 

pi 
 

L 

μ 

L 

 

  

 

 

    
            Fig 4: Worker port’s open interval with 
overlap 
 
3.2.3 Resynchronization/Adjustment part 

 

HOPERAA algorithm, which is an adaptive 

algorithm, enables hopping in the presence of clock 

drift. Client clock has a drift related to server clock, if 

they have different clock rates, then length of the 

hopping period will deviate from each other. This  

causes message loss which is due to the fact that 

client may send message to some of server’s port 

which have been closed or have not been opened yet-

depending on client’s clock runs slower or faster than 

server’s clock respectively.  

To solve we propose HOPERAA algorithm by each 

client to adjust its hopping period length and align its 

hopping time with the server. Growth of deviation of 

hopping times would imply more message loss, so 

client has to align the hopping time at adaptively 

chosen time intervals which are called the 

HOPERAA execution-intervals. If the client’s clock 

rate is slower than the server’s clock rate, which 

means clock drift of client is less than 1, and if we 

want to keep the offset of the closing times counted 

by the server and the client of a worker port within 

maximum allowed value time units. However, the 

client has no idea about its clock drift.  

         We suggest a method which exchange messages 

with information about the sending and receiving 

times (time stamped with local clock values) between 

client and server, to estimate the clock drift.  



IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 1, Issue 1, March, 2013 
ISSN: 2320 - 8791 
www.ijreat.org 

 

www.ijreat.org 
Published by: PIONEER RESEARCH & DEVELOPMENT GROUP(www.prdg.org) 

6 

 

 

 
Fig 5: Messages exchange and associated times and Timestamps. 

 

3.3 BIGWHEEL Algorithm 
  

BIGWHEEL algorithm enables multiparty 

applications which mean many clients per server.  

Clients can interact with the server independently. 

For scalability reasons, it is desirable that the server 

has more than one worker ports open in each time 

period, so as to balance the load among them. Having 

the same  hopping period  and different phases in the 

corresponding hopping sequences ,such a method can 

manage to bound better the time it takes for each 

client to initiate contact with the server. Consider an 

example Big Wheel rides at amusement parks: the 

next available compartment is queued by the clients 

where each compartments are represented as a 

hopping sequences; compartments are deployed in a 

way that aims at balancing the load among them .It 

also minimizes the waiting time of the client to 

initiate contact with the server.  

 

4.Simulation and Results 

 

The simulation was done using NS-2 simulator to 

evaluate the performance of our DDoS detection  

with results obtained from the experiment. We tested  

in fedora environment. This section introduces the 

experimental setup and reports performance results. 

 

1)Experiment study 
Our simulation includes 12 clients, 7 intermediate 

routers and  3 servers as shown in figure . The 

bandwidth of legitimate traffic is set constant and the 

simulation of  attack traffic is achieved by randomly 

generating  many pairs of Constant Bit Rate (CBR) 

TCP flows  in NS2.  

 

 
            Fig 6:Client send request to server 

 

 

     

 
  Fig 7:Attack identified and message loss 

  



IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 1, Issue 1, March, 2013 
ISSN: 2320 - 8791 
www.ijreat.org 

 

www.ijreat.org 
Published by: PIONEER RESEARCH & DEVELOPMENT GROUP(www.prdg.org) 

7 

 

 
 
Fig 8:Port number initialization 

 

2) Performance Evaluation: 

 
To evaluate the performance of our algorithm, 

we plot the evaluation graph which contains time 

value in X-axis and normalize entropy value in 

Y-axis. With the help of graph shown below, we 

are easily able to conclude that if we take 

threshold value1.1, it can easily detect the attack. 

 
Fig.8 Effect of DDOS attack 

 

4. Experimental Results 
 

1) DoS and DDoS attacks can be made less 

severe by performing these algorithms. 

2) The message loss due to the clock drifts can 

be controlled by adjusting parameters in the 

protocol. 

3) The Malicious traffic and congestion in the 

network has been reduced and had improved 

the lifetime of the network and the latency. 

4) Server can handle packets from the 

legitimate user effectively and delay may 

not occur. 

5) Server’s performance may not get slow 

down. 

6) There will be no attempt to consume a 

server's resources (network bandwidth, 

computing power, main memory, disk 

bandwidth etc) to near exhaustion. So that 

there will be resources left to handle 

requests from legitimate clients.  

7) Utilization of multiple machines (often 

thousands) by attackers to generate 

excessive traffic can be avoided. 

 

5. Conclusions 
 

In this paper we have presented a detailed study on 

how to mitigate DoS and DDoS attacks in the 

presence of clock drift. In this work, we investigate 

application-level protection against DoS attacks. An 

algorithm is presented for a server to support port 

hopping with many clients. A main conclusion is that 

it is possible to employ the port hopping method in 

multiparty applications in a scalable way. Another 

main conclusion is that the adaptive method can work 

under timing uncertainty and specifically fixed clock 

drifts. 

In the Future work, we can extend it to prevent 

Network attacks. There are many types of network 

attack, we investigate to prevent server from all such 

types of network attacks.  

 

Acknowledgements  

 

This paper has benefited from conversations with 

many different people – far more than can be 

acknowledged completely here. Still we would like to 

particularly thank Dr.P.S.K.PATRA, HOD, CSE for 

his guidance and support. 



IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 1, Issue 1, March, 2013 
ISSN: 2320 - 8791 
www.ijreat.org 

 

www.ijreat.org 
Published by: PIONEER RESEARCH & DEVELOPMENT GROUP(www.prdg.org) 

8 

 

 

References 
[1]Z. Fu, M. Papatriantafilou, and P. Tsigas, “Mitigating 

Distributed Denial of Service Attacks in Multiparty 

Applications in the Presence of Clock Drifts,” IEEE 

Transaction on dependable and secure computing, vol 9, no 

3, May/June 2012. 

 

[2]Spread Spectrum Scene, http://sss-mag.com/ss.html, 

2011. 

 

[3] G. Badishi, A. Herzberg, and I. Keidar, “Keeping 

Denial-of-Service Attackers in the Dark,” IEEE Trans. 

Dependable and Secure Computing, vol. 4, no. 3, pp. 191-

204, July-Sept. 2007.Greece, and the PhD degree in 

computer engineering and informatics from the same 

University, in 1994.  

 

[4]H. Lee and V. Thing, “Port Hopping for Resilient 

Networks,” Proc.IEEE 60th Vehicular Technology Conf. 

(VTC2004-Fall), vol. 5, pp. 3291-3295, 2004 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[5]M. Srivatsa, A. Iyengar, J. Yin, and L. Liu, “A Client-

Transparent Approach to Defend against Denial of Service 

Attacks,” Proc. IEEE 25th Symposium Reliable Distributed 

Systems (SRDS ’06), pp. 61-70, 2006. 

 

[6] A. Lempel and H. Greenberger, “Families of Sequences 

with Optimal Hamming Correlation Properties,” IEEE 

Trans. Information Theory, vol. IT-20, no. 1, pp. 90-94, 

Jan. 1974. 

 

[7]G. Ge, R. Fuji-Hara, and Y. Miao, “Further 

Combinatorial Constructions for Optimal Frequency-

Hopping Sequences,” J. Combinatorial Theory Series A, 

vol. 113, no. 8, pp. 1699-1718, 2006. 

 

[8]Y.M. Ryoh Fuji-Hara and M. Mishima, “Optimal 

Frequency Hopping Sequences: A Combinatorial 

Approach,” IEEE Trans.Information Theory, vol. 50, 

no.10, pp.2408-2420, Oct. 2004. 

 

 


